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A pictorial "blackboard mnemonic"  type method presented allows the 
molecular orbital level patterns, the numbers of  non-bonding, bonding, and 
anti-bonding orbitals to be figured out from the actual or tentative structural 
formulas (or ORTEP diagrams) of  saturated or unsaturated molecules or 
intermediates regardless of  symmetry. The simple pictorial rules are illustrated 
on: bicyclo[p.q.0] hydrocarbons, pyridine, alkyl groups, quaternium ions, 
some amines, ethers, water and alcohols, and on some fluorohydrocarbons. 
The readily obtained MO level patterns, e.g. during rearrangements, give a 
handle on the qualitative behaviour of  various structures or species. The 
method applies also to metal atom and other clusters. 

Key words:  Qualitative quantum chemistry - -  O R T E P  - -  Non-bonding MO's 
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I. Introduct ion 

While large scale computer  calculations may provide data on selected molecular 
species, day-to-day chemical reasoning requires qualitative pictorial tools, sorts 
of  "blackboard mnemonics"  easy to use with large numbers and kinds of  species. 
Structural formulas (SF) 1, ball-and-stick models, as well as the Lewis-Langmuir  

List of  abbreviations: AO: Atomic orbital; ECI: Electron count index; H.F.: Hartree-Fock; LPI: 
Level pattern indices; MO: Molecular orbital; SC: Structurally covariant; SCF: Self-consistent field; 
SEF: Structural-electronic formula; SF: Structural formula; VB: Valence-bond; VIF: Valency points 
interaction formula; VP: Valency point; VL: VP-VP' interaction line; VSEPR: Valence shell electron 
pair repulsion 
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octet rule and the dative pictures [1] which pre-dated quantum mechanics are 
such mnemonics as are their quantum version, the valence-bond (VB) structures 
enhanced by the concept of r e s o n a n c e  [2]. All are of great utility. However, the 
octet rule does not guarantee the stability of  a molecular species. Species with 
quite similar dative structures may behave very differently. Take e.g. cyclopropane 
C3H6, cyclotriazane, N3H3, and ozone 03. All are isoelectronic (obtained from 
each other by the isoelectronic replacements CH2 ~ NH ~ O), all could have had 
similar geometric and Lewis structures, but do not. C3H 6 is cyclic and stable, 
N3H 3 has never been made, 03 is stable, but not cyclic, though bent. 

The valence bond and resonance picture goes a long way, but does not predict 
anti-aromaticity. The Hiickel 4n + 2 rule does, but then it applies only to single 
rings [3]. In systems where VB leads to a large number of resonance structures 
(e.g. over 400 in metallocenes) [4] its convenience diminishes. 

The molecular orbital (MO) method has been used both as a qualitative device 
(types of MO's from combinations of atomic orbital (AO) pictures), and for 
semi-quantitative calculations [5] as well as, in the sense of "energy-best", 
Hartree-Fock or self-consistent field (SCF) MO's [5], as the essential starting 
points of many-electron methods [6, 7], which include the electron correlation 
effects lacking in MO theory. 

While VB preserved a close connection with chemical structural formulas, MO's 
even as a qualitative tool loose this convenience [8] requiring the use of group 
theory and /o r  computer calculations and many orbital pictures for the same 
molecule. 

As pictorial tools, both VB and MO depict wave-functions (w.f.), VB an approxi- 
mate N-electron w.f., MO the independent electron ones, i.e. orbitals. From the 
nature of the w.f.'s, deduction of qualitative energetics is attempted. For example 
orbital pictures should tell which energy levels (and MO's) are bonding, non- 
bonding, or anti-bonding. From VB (ground state VB w.f.'s) which SF are expected 
to be more stable, and so on. Either way difficulties, as far as pictorial mnemonics 
are concerned, may be tracable to the fact that it is not the w.f. that is observable. 
The structure, drawn crudely as an SF, or accurately as an ORTEP diagram that 
resulted from a crystallographic analysis reflects directly not the w.f., not the 
orbitals, but the electron density and the energy. So, one might ask, could one 
have a pictorial quantum tool for chemical reasoning that is closely related to 
the conventional structural formulas (or even ORTEP) and which would allow 
deductions directly on energetics and density without the intermediary of orbitals, 
parameter choices, or computer calculations? Further the method should not 
depend on any particular symmetry, since most molecules lack it or rapidly loose 
it upon the slightest substitution or distortion. 

In the present paper, we present such a mnemonic. The first crucial electronic 
property of  a molecule is which of its MO's are bonding, which ones non-bonding 
and which are anti-bonding. In fact, just the two sets of numbers, (i) how many 
orbitals of each type, and (ii) how many electrons occupy each type, play a major 
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role. The first (i), we might call for short, the levelpattern indices LPI = {n§ no, 
n_} where n§ = number of bonding valence shell MO's; no = # non-bonding and 
n_ = # anti-bonding. Each atom making up a molecule has a valence shell size 
(ha ~-1 for H; no = 4 for first main group elements, Li, Be, B, C, N, O, F, Ne; 
and na =9  for transition metals with e.g. 4s, 4p, 3d for the Fe series) whose sum 
for all the atoms of a molecule gives the total number n of valence shell AO's 
and also of  MO's. Thus n = ~ ,  na = n++no+n_. 

The second index (ii) is the electron count index ECI = {N§ No, N_} with N+ = no. 
of  electrons in bonding MO's, No in non-bonding MO's and so on. The sum 
N§  No+ N_ = N is the total number of valence electrons in the molecule. 

It will be shown that the LPI can be deduced from the structural formula or 
ORTEP diagram. Then the electrons can be assigned to get the ECI. There have 
been attempts of course in the past to get at some feature of the LPI especially 
in the pi-systems by looking at the molecule or its pi molecular diagram. Well 
known is the alternant hydrocarbon rule [9] that upon labelling every other 
carbon with a star, if in the 7r-system no two adjacent carbons turn out to be both 
starred, or both unstarred, then the bonding and anti-bonding energy levels are 
symmetrically disposed (so that also n§ = n_). Lonquet-Higgins [10] attempted 
to find also the no, the all important (for many additional reasons as we shall 
see below) non-bonding MO's, but only some inequalities could be given for 
some hydrocarbons. On the other hand, there is the well-known Frost-Musulin 
[11] algorithm which gives not only the LPI, but the actual energy levels for 
monocyclic pi-systems with their pi-molecular diagram drawn in a circle. Neither 
this, nor the H/ickel (4n + 2)-rule [3] apply however to arbitrary pi-systems with 
say multiple rings, pi-side chains, etc. not to mention heteroatoms. 

In the method below (which we might also call the "structural-electronic" method) 
the LPI of  arbitrary organic or inorganic molecules are obtained using two simple 
pictorial rules on "structural-electronic formulas" (SEF) which are like amplified 
structural formulas drawn from the latter or from ORTEP diagrams. In addition 
however, one obtains how the LPI would change as one goes from one set of 
molecules to another of the same total empirical formula thereby getting a guide 
to the quality of rearrangements, large or small distortions, and reactions. 

2. The structural-electronic method and its two rules 

We present the method in a way to indicate that it can be used without any 
quantum mechanics much as the structural formulas and arrows are used by 
synthetic organic chemists. The quantum and mathematical connection are noted 
within the text in small type and along with a summary of proofs in the Appendix. 
Further details of  the mathematical theory behind the method will be found in 
Ref. [12]. 

A structural formula (SF) or an ORTEP diagram is first amplified into a structural- 
electronic formula (SEF) [which may also be called a "valency points interaction 
formula" (VIF)] this way: Each atom a of  valency shell size no is represented 
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by n~ valency  points  (VP). I f  two VP's be tween two atoms are thought  to interact  
(cf. below) a VP-VP'  interaction line (VL) is drawn between them. Nearest  

ne ighbor  VP's for example will in general  interact.  In  the case of a pi-system this 
will lead to the famil iar  "p i -molecular  d iagram" [13]. It is not  crucial whether 

one includes  at first more lines or not, Whether  addi t ional  lines would  alter the 

LPI can be ascer tained later with the two pictorial  rules on more  elaborate  VIF's .  

For  arbi trary molecules  made  up  of ma in  group elements with n~ = 4 (s and  p 

valencies only),  if one is not  looking just  at a pi-system, the four VP's of any 
given a tom are also connec ted  to each other with in t ra-a tom VL's. Each such 
a tom therefore looks like a te t rahedron (actual  geometry not  impor tan t  in  the 

VIF, cf. below) interest ingly as in the 19th century van ' t  HotI model  for carbon,  

bu t  here no t  only for ca rbon  but  any of the others like B, N, O, F, S, P, etc. (in 

the second ma in  group elements if the expans ion  of the valence shell is not  at 

first inc luded)  as well. 

I n  the molecule ,  two ne ighbor ing  " te t rahedra"  may be or iented corner- to-corner ,  

edge-to-edge, f ace - to - face , . . .  The required or ienta t ion  being evident  from the 

structural  fo rmula  (cf. the examples below). In  conjugated  systems with both the 
sigma and  the pi valencies inc luded  in the VIF,  this leads to pictures with what  

look like " b a n a n a  b o n d s "  (e.g. in C2H4, C and  C' are edge-to-edge) rather  than  
sigma and  pi bonds.  [It  should be emphasized however,  at the outset, that the 
l ines in a VIF are not  " b o n d s " ,  bu t  depict one-elect ron interact ions (cf. below) 

which are parts of the one-electron hami l ton ian  h, as electrons have not  been  

assigned to the MO's  or the VIF yet.] 

Quantum connection (QC): Each VP represents a valence atomic orbital (AO), either a pure one (s, 
Px, dxy,...) or a hybrid (tetrahedral t, trigonal u, etc.) Each molecular structure corresponds to a 
one-electron effective hamiltonian, h (such as the usual, or extended Hiickel one) which is parametri- 
caUy dependent on the 3 Dim. atomic positions {R}. The h is of the form h =~j/3~jA ~ with 
A ~ = [e~)(eJ[ + leJ)(e~ l and/3ij = (e~lhlej). In fact, the VIF depicts directly this operator h with le') being 
a VP, A ~j being a line (of standard unit "strength", i.e. coefficient of A ~j unity) between the VP's i 
and j. In hydrocarbons interatomic/3~j's are roughly of comparable magnitude say/30. Thus/3o//30 ~ 1 
are takenas std. unit strength and positive; otherwise the actual relative magnitude I/3,d/3ol = IKI and 
the sign of the strength may be written on its line in the VIF. 

VP's also have self-energies/3, -= a~ which are the orbital ionization potentials. Where a's of different 
atoms or VP's do not differ greatly, an average of all a's in the molecule is taken as the std. ao. As 
is usual in Hiickel MO's, ao may be taken out of the h, i.e. h ~  h - aoI so that the std. VP's will be 
at this reference zero of energy (d~ -= a~ - a 0 = 0). If a ~ ~ d~//30 is not negligible compared to unity, 
there will also be "loopline'" (i ~SD ~) of strength ~i in the VIF. 

The overlaps A~ = (eilei) between AO's need not be assumed zero. By the "covariance theorem" 
proved in Ref. [12], the LPI of h will be the same with or without overlaps. 

With pure AO type VP's there are no intra-atomic lines since (edhlej~)= 0 in that case. With hybrid 
AO's {m}, (mi~lhlmj~)~ 0 in general. Such intra-atom/3's were included in the earliest sigma MO 
theories [14] but often omitted in later semi-empirical MO methods [15]. Recently the importance 
of intra-atom/3's in semi-empirical MO was elegantly demonstrated by Dewar [16], who noted that 
/~o~o, between the tetrahedral AO's of a carbon should be comparable to the inter-atomic sigma/~r 
The one center/~,, = �88 -ap), the coefficient becoming 1/3 for trigonals, 1/2 for diagonal hybrids. 
One might take [16] roughly/3,,~/3o- 
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The LPI to be deduced pictorially from the VIF below is not dependent on the actual magnitudes 
of the line strengths (~:i, K~j,... ~ 1) often over broad ranges of  these, or their parent (as,/3ij ) parameters. 
These ranges can also be found from the VIF by the two VIF-rules given below. There are "critical" 
values of some of  the ~: and K however where suddenly the LPI changes. These values have a crucial 
role in determining when a molecule rearranges, changes hybridization type on some of  its atoms, 
etc. Various examples of  this "electronic tuning" phenomena will be observed in this and subsequent 
papers. 

A stable molecular structure and the observed ground state geometry actually results not so much 
from only the 3-dimensional Hiickel hamiltonian [ 17], but from an interplay of this "orbital control" 
or "electronic control factor" (given by the one-eleCtron MO levels) and another well-known effect 
[18], the VSEPR, "valence shell electron pair repulsion". The latter arises from the N-electron wave 
function ~b constructed as an anti-s~,mmetrized product of spin MO's, the anti-symmetry of  ~b keeping 
electrons 0f like spin apart, the effect displaying itself as an "exchange repulsion". The norm, the 
"energy best" MO's, are the Hartree-Fock (HF) or self-consistent field (SCF) MO's, all the other 
MO's of  various approximate methods [5] approaching these. For stable ground states HF ~ with 
its full N-electron energy (~[HI~) (omitting electron correlation, E~orr effects [7, 19, 20] which are 
however even qualitatively important for highly non-closed shell states such as excited states [19a] 
or on many points of  potential energy surfaces [19b]) reproduces the ground state geometry fairly 
well [5, 21]. Unlike the 3-dim. Hfickel method, the HF has both the "electronic (or orbital) control" 
and the VSEPR built into it [22]. What about the relation of  these two effects to the VIF? 

If a 3 dim. Hiickel full VIF were drawn with all the lines in it with all of the strengths, a~'s and/3~j's 
in the h, it would not necessarily be a more realistic description of the observed molecular structure 
than a VIF drawn looking at the SF or the ORTEP and selecting the significant lines. The actual 
structure reflects the VSEPR as does therefore the mnemonic VIF derived from the SF. If the structure 
is not known, one can draw some tentative SF's and their VIF's, get the LPI, then assign the N 
electrons to the MO types as well as /or  on the decoupled pieces of VIF's "reduced" by the two SE 
rules as will be seen later. Then looking at the electrons assigned to the decoupled or reduced VIF's, 
one can see where large VSEPR effects would want to change the geometry making some VP's 
mutually further apart and eliminating their substantial lines. In any case, one can also start with a 
realistic looking SF-based VIF, get its LPI, add more lines, change some strengths, and see if the 
LPI is changed. 

We now state the basic result derived from the theorems proved in [12] and with 
the proofs outlined in the Appendix: 

All VIF's that can be obtained from each other by the two rules given below have 
the same LPI. Conversely, if  two VIF's have the same LPI, they must be transform- 
able into each other by the two rules. The rules may be applied any number of 
times, in any desired combination or succession to get from one VIF to the other. 
(This is so, because any intermediate VIF obtained will also have the same 
LPI).The two rules are: 

Rule I : Any valency point VP of a VIF may be multiplied by an arbitrary constant 
K, positive or negative so long as it is not zero. This changes, distorts, etc. the 
VIF but does not change its LPI. Multiplying a VP by K means multiplying the 
strengths of  all the lines emanating from that VP by K. 

Rule 2: Any VP of a VIF may be lifted up, taken over and placed onto any other 
VP' carrying along the lines that terminated on VP onto the new VP' which 
becomes a terminus for those lines. If  in the process two lines superimpose their 
strengths are added algebraically giving the strength of  one new line. The original 
lines that terminated at the initial VP and that VP are also retained in the resulting 
VIF'. Then VIF and VIF' will have the same LPI. 
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With these rules one can generate all the molecules (or reacting assemblies of 
molecules) that are iso-LPI, hence of similar energetic quality (if electron occupa- 
tions, ECI, also do not change, i.e. the rearrangement or reaction is electronically 
adiabatic). Changing the strengths of some of the interaction lines in a VIF using 
Rule 1 one or more times may correspond to changing some interatomic distances 
in the molecular structure (since /3iajb is a monotonic function of the interatomic 
distance Rab), or for the intra-atom lines, to changing hybridization, or to changing 
the values of some of  the/3 parameters as in a semi-empirical MO theory. Thus 
one can tell whether the qualitative level pattern, i.e. the LPI will be affected or 
not by any such changes. Using the rules on a VIF one can also obtain the LPI 
itself. In this case, the aim is to "reduce" the VIF in such a way that more and 
more lines are eliminated until one ends up with the n-valency points none 
connected to each other. Such a fully reduced VIF will have no VP's which are 
just bare, n+ VP's each with a positive strength loop (i.e. a line that starts and 
ends on the same VP), and n_ VP's each with a negative strength loop. Thus one 
reads off from the final picture, the LPI = {n+, no, n_}. 

A few simple examples will illustrate the rules and their use. 

3. Some examples and applications 

3.1. Conjugated hydrocarbons (their pi parts) and clusters of uni-VP atoms 

To draw the pi part only, i.e. VIF ~, place one pi-VP for each such carbon, then 
connect all the nearest neighbor pi-VP's (additional interaction lines' possible 
effects may also be examined if desired). The VIF of  a uni-VP atoms' cluster, 
e.g. hydrogen clusters, or alkali clusters (if p-effects are at first neglected) are 
similar (even with some 3-dim clusters). 

Take e.g. bicyclo[6.2.0]decapentaene. From any one of the Kekule structures, 
SF, we get the VIF ~ as in Eq. (1). 

SF(  
VIF~: 

Where no "strength" is shown on a line it is taken to be (flo//3o = 1), i.e. plus 1. 
All the ~r-lines in Eq. (1) are assumed to be standard, hence +1. 

The strategy in applying the rules to rings to get their LPI is first to try to break 
the rings. In Eq. (2), multiply first, the VP " a "  by K = -1 .  This makes the lines 
(ab) and (ad) of ( - 1 )  strength. Then, by Rule 2, take a onto c. The minus (ab) 
line cancels the (bc), while (ad) cancels (dc). Both rings are broken. An iso-LPI 
straight chain ~r-VIF, that of  n-decapentaene results. Such VIF's (or molecules) 
which have the same LPI, we refer to as being "structurally covariant" (s=c). 
Conversely, all (s=C)-molecules are in the same mathematical class [1] and will 
have the same LPI. 

Continuing, one may multiply a by K = -1 ,  take it over onto d which is the same 
as folding (ab) onto (db). The signs now again being opposite, (ab) cancels (db). 
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Proceeding similarly one ends up with five single ~r-lines as seen in Eq. (2). But 
this is the same as the 7r-VIF of a collection of  five isolated pi-bonds. Thus the 
pi-parts of a Kekul6 SF (as drawn without further delocalization, or as in a simple 
ball-and-stick model) and of the actual molecule with its pi-delocalization over 
both rings (for standard geometry) are LPI-equivalent. They both yield zero 
non-bonding MO's and five bonding-antibonding pairs of MO's. Since the neutral 
molecule has N~ = 10 pi-electrons, the ECI = {N§ = 10, No = 0, N_ = 0}, so the 
pi-system itself is stable. It is interesting that, the individual rings, being of the 
(4k)-type (k = 1 for cyclobutadiene, k = 2 for the eight ring), are both 4n-Hfickel 
anti-aromatic, but their edge-fused composite is not. 

Had we applied the rules to a std. geometry cyclobutadiene, we would have 
gotten, Eq. (3). 

{c i) _o 
d b 

sFI Ivi . 
x(-1) 

SC SC 

x 

d b d - b 

x(-1) 
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; n +  = 

O 
_ . . L P / =  / , n o =  2, n _ =  1 t 
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The familiar  result with two non-bonding orbitals (no = 2) is obtained. For the 
neutral molecule, the ECI = {N§ = 2 x n+ = 2; No = 2 in two non-bonding MO's}. 
Note that since the zero of  the energy as the reference point for MO levels is 
fixed and remains fixed during the application of the rules, no = 2 also gives 
(unlike n+ or n_) the actual degeneracy of the energy level at e = 0. [For the n§ 
or n_ on the other hand this is not so, whether e.g. the n+ MO's are degenerate 
or not, so long as they are bonding, they are counted in the n+. Other degeneracies 
than the e = 0 levels can also be obtained with the present theory [1] without 
using group theory. However, the other degeneracies not being as important 
unless the levels coincide with a highest occupied MO, for qualitative energetics 
with static molecules that topic is not included here.] 

Various classes of  polycyclics and other conjugated systems can be treated this 
way. The cases of  the bicylco[p.q.0] hydrocarbons for example, are reported in 
detail in [23]. These pi-systems fall into several classes [23], one of which 
is the class bicyclo[p.q.0] with the two rings of  the [4k][4k']  (with k, k'  integers) 
type, Eq. (1) being an example. For these we have from the rules: 

LPI=(bicyclo[p.q.0] with [4k][4k']  fusion) 
(4) 

( P + q + l ;  n~ P+q+l} = n ~ =  2 n ~ = 0 ;  _ =  2 " 

IV 

Ma Mc I 
Mb Md 

Md 

Fig. 1. Some spatial configurations of a cluster of four uni-VP (s-type) atoms. The (s=c) lines between 
configurations indicate the latter are "structurally covariant", having therefore the same MO level 
patterns, LPI = {numbers of bonding, non-bonding, antibonding MO's}. If (~), the LPI's differ 
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As another example with uni-VP atoms, and related also to the ~'-cyclobutadiene 
case, consider several spatial configurations of  a cluster of four uni-VP atoms as 
in Fig. 1. The atoms {M} may be hydrogen, deuterium or Li, N a , . . .  (alkali with 
s-valencies only; the inclusion o fp  would make for a more complicated example). 

Figure 1 shows all the interatomic distances (and since here one atom means one 
VP, and flo(Ro) is a monotonic function), hence all the line strengths as being 
equal (unity). Using the rules as in Eq. (3), we readily see Eq. (5). 

LPI(I) = LPI(II)  = LPI(IV) = {n+ = 2, n_ = 2} 

LPI(III)  = {n+ = 1, no = 2, n_ = 1} (5) 

LPI(V) = {n+ = 1, no = 1, n_ = 2}. 

E.g. in configuration (IV), multiplication of Ma by K = - 1 ,  then taking it over 
first to Ma, then to Mb reduces the VIF (i.e. iso-LPI-wise) into the pieces (ac) 
and (bd), hence {n+ = n_ =2}. 

In (V), one may multiply Ma by ( -1 )  making the (ac) and (ab) lines minus, 
then take it onto Ma cancelling out (cd) and (bd) yielding one triangle and one 
bare dot. Thus we have Eq. (6). 

} ( l)x . . ~ , ~  sc sc c 

d b "d 

s__! 

, 7  / 
(6) 

The triangle's LPI is well-known (e.g. by the Frost-Musulin algorithm) contribut- 
ing one bonding, two anti-bonding MO's (note that after the second step in Eq. 
(6) a is multiplied by ( -1 )  again making all the sides of the triangle positive, 
i.e. we have a Hiickel polygon). [Nevertheless, if the answer were not already 
known, we could have obtained it with the rules, in this case folding (ab) onto 
(bc) would fold line (ac) into a loop at c of  strength 2 (cf. Appendix B for cases 
which lead to loops during application of  the rules and how to deal with them.] 

Figure 1 compares the LPI's of  the initial and final structures or VIF's for each 
pair of spatial configurations. If  the two have the same LPI (and therefore the 

SC . SC 
same ECI for fixed N) ,  they are "structurally covariant" (=) ,  otherwise not (# ) .  
This is a very rough guide to the "thermic quality" or "thermicity" of  a reaction 
in the thermochemical, not kinetic sense. Kinetic pathway quality along a defor- 
mation or reaction pathway also follows from the present SEF approach with a 
few additional considerations. It is treated as a separate topic [1, 24] We only 
note here that with the two rules one examines not only an initial and a final 
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structure or VIF, but also what happens to the LPI (hence adiabatically to the 
ECI) as one structure or VIF deforms continuously along a certain path to a 
final structure or VIF. If the LPI remains the same throughout, we call the two 
structures or VIF's "deformationally covariant" [1] (DCp) along that path P. 

The H3, H~-, H3 system provides a simple illustration of the deformational 
principle as well as how the cations and anions of a system may be treated with 
the same VIF. 

Take a linear or quasi-linear (where bending is not sufficient to introduce an 
end-to-end interaction) H3 configuration. In Eq. (7) taking the H - H  (hence line 
strengths) equal at first (/3//30 = +1), the familiar LPI with one non-bonding MO 
is obtained [multiply a with ( -1 ) ,  fold it onto c cancelling (bc).] The VIF's 
shown in Eq. (7) are structurally covariant (s=c) taken as initial and final states. 
However, in addition if we multiply (a) by an arbitrary r > 0 less than or greater 
than unity, making the (ab) line strength equal K, we get the same LP I=  
{n+ = no = n_ = 1} regardless of the value of K as seen in Eq. (8). 

H •  sc H sc 

a C C a C 

sell 

�9 L P 1  = n o  = 1 , .  - -  �9 b 

n _ = l  

(7) 

H sc H 

x ( - K )  ( R u l e - 2 )  c 

( R u l e - l )  

�9 L P I =  n + = n o = n  = 1 ~- H 

C 

(for any value ~ 4: o) x ( -  ) 

(8) 

Furthermore in this example K (hence the (ab) distance R~b from the monotonic 
nature of  f l (R))  may vary continuously all the way to and including K = 0. Thus 
the VIF which represents either H 3 ,  o r  H~-, or H ;  (same LPI, different ECI's and 
N's)  is deformationally covariant along the quasi-linear path. This indicates why 
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the barrier is small (~7  kcal/mole) (relative to half a chemical bond energy) in 

H 2 + H  pc DC =~ H ' " H ' " H  = )  H + H 2  

The VIF remains qualitatively the same for the anion and cation giving the same 
LPI for H3, H~-, and H ;  with the resulting ECI (Ha)~-{N+ =2,  No = 1}, ECI 
(H~) = {N+ = 2}, ECI (Ha) = {N+ = 2, No = 2}. [Beyond this point Pauli exclusion 
repulsions of  like spin electrons (in H3 and H ; )  as in VSEPR, electron correlations, 
details of  the nuclear-repulsions-balance, etc. would come into the picture.] 

3.2. H e t e r o a t o m  effect on a heterocyclic 

In the pyridine pi-system, as an example of one kind of heteroatom effect, the 
VIF, Eq. (9) contains a loop-line on the nitrogen pi-VP as the nitrogen p-VP 
self-energy (corresponding to the orbital ionization potential-aN (2p) = 13.4 eV) 
[25] differs from that of carbon ( -ao(2p)  = 11.4 eV) [25]. We examine the effect 
on one heteroatom (several hetero-atoms have a different effect) on pi-aromaticity. 

VIFlr: 
CN 

+ ~rq 

Taking the zero of the energy at the a~--- ao, we have only the nitrogen pi-VP 
with a non-zero self-energy (aN--a0),  hence with a loop in Eq. (9) of strength 
r relative to the std. line strengths' unity (fl~o/flo =- 1), 

aN-- a ~ >  1. (10) r /30 

Similarly the C - N  line strength is changed to ( f l c N / B o c ) =  KCN~ 1, relative to 
C-C lines which were all taken to be of  the std. strength (~co/ f lo=-1) .  

Dividing the nitrogen zr-VP by KCN in Eq. (9) per Rule 1, we get Eq. (9') with 
the same LPI. 

sc ~ 
Eq. (9) ".. (9') 

1 

where now all lines are of unit strength, and the loop has 

~'= ~N/~N 
Note that the loop is divided by the square  of K as each end of the loop line is 
divided by K (cf. Appendix B, for other loop rules). The Eq. (9') is reduced in 
Eq. (11), with the two rules. 
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'Eq. ( l l a )  

Had we done pi-benzene with the very same steps as in Eq. ( l l a ) ,  we would 
have gotten three unity line segments yielding the known LPI (benzene-~-)-- 
{n+ = n_ = 3} (and ECI = {N+ = 6}). In that case we would have also observed 
that the full ~-VIF of benzene is iso-LPI and structurally covariant with its 
Kekul6 structures as well as with its cut-open 6-pi VP chain version, Eq. (12). 

Benzene 

Kekule' SF: V/Ur: D- "" ~ I 

lsc (12) 

The last part follows from Rule 2 as indicated with the two arrows. In fact, this 
gives us a qualitative criterion for pi-aromaticity: If the pi-system is pi-aromatic 
(necessary condition) [26], the full pi-VIF is iso-LPI i.e. structurally covariant 
with the VIF '~ of the actual standard Kekule structures. This is consistent with 
Dewar's [27] definition of aromaticity as seen from the last part of Eq. (12) as 
the cut-open straight chain case used by Dewar and also has the same LPI. 

In the pyridine case, any change in the LPI ~ from benzene is reduced to the 
behavior of the looped piece in the last picture in Eq. ( l la ) .  One might think 
that the LPI ~ and pi-aromaticity will depend on the value of ~:' which differs 
from heteroatom to heteroatom. However, we find in Eq. ( l l b )  that the loop-piece 
contributes one to n+ and one to n_ no matter what the value [26] of ~'. 
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I o } ~ i sc : , O~' ._g  0 *' -~' 

x(-~') 

( l l b )  

f0101} 
[For the looped VIF reductions see Appendix B. Also a caution: Zero limits of 
variables like ~ or K should not be taken during a VIF reduction. The constants 
used in Rule 1 for example can be any value, but not zero]. 

Thus Eqs. (1 la,  l l b )  have proved that the LPI = of a single heteroatom pi-hexagon 
is the same, {n+ = 3, n_ = 3}, as ~'-benzene, no matter what the heteroatom or 
ion is. The pi-aromaticity is unaffected as is known to be so in pyridine and e.g. 
in the pyrylium cation. [With more than one heteroatom, different and interesting 
things happen [26]. Further, the role of  the sigma framework even on the 
aromaticity of  benzenoids traditionally viewed as a ~--only problem, need be 
considered [26]. 

3.3. S o m e  sa turated  molecules  

(i) A lkanes ,  alkyl  groups, quatern ium ions. For each carbon (or n i t rogen , . . . )  a 
tetra-VP atomic VIF is drawn as mentioned in Sect. 1. Ordinarily interatomic 
VP-VP' lines will be drawn from the structural formula. [More refined molecular 
VIF's may also be drawn by adding lines (IKI < 1) between atoms which are 
further apart  to study e.g. conformational effects (omitted here).] 

For any straight or branched chain alkane, the VIF reduces (s__c) with the rules 
into a set of  isolated CH and CC line segments as demonstrated for propane in 
Eq. (13). 

H 

H . - .  2 H \ c, ,../~.,,c 

H C3 

H 

(13a) 

The intra-carbon, inter-carbon, and C - H  line strengths are of  comparable  magni- 
tudes. But even if their differences are put in, the reduction procedure in Eq. 
(13b) by the two rules shows that the LPI is unaffected. 
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H 

H 

H 

H 

SC 

SC 

H 

H 

H 

x( 1) 
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(13b)  

Each simple line segment contributes a n+= 1 and a n_---1, so that L P I =  
{n+ = n_ = 10} for propane or for any such alkane n§ = n_ = (no. of  C - C  and 
C - H  bonds). As there is one electron per VP in alkanes, ECI = {N§ = 20, No = 0, 
N_--0} in propane or N§ = 2n§ These electrons may be assigned not only to 
the n§ MO's,  but in the reduced VIF to each VP-VP'  one electron (/3) interaction 
line segment as well, which only in saturated systems looks like the SF or the 
valence bond structure. [Note however that, a bond-line in the SF or in the 
Pauling VB theory is an electron-pair bond wave function. Here, in the VIF, a 
C - H  or C - C '  line is a piece of  the one-electron hamiltonian h. Thus the VIF single 
line, giving rise to two MO's  (bonding-anti-bonding couplet), can accommodate  
up to 4 electrons charge repulsions permitting. Thus H2 and He2 have the same 
VIF, but not the same SF or valence bond diagram.] 

In any alkane or alkyl group one starts the VIF reduction from the terminal 
methyl group as in Eq. (13b). The C1-C2 line that remains connected to the rest 
of the molecule, in e.g. Eq. (13a) is treated then the way a C - H  line was treated 
(multiply by - 1  or -K,  fold it onto three intra-carbon lines one at a time). 

A tetraalkyl ammonium ion will have the same VIF as the corresponding alkane 
branched at the carbon that replaced the nitrogen. One advantage of the VIF- 
method is that molecules are classified with respect to their similar VIF's  rather 
than by their iso-electronic aspect. There are sets of molecules which are chemi- 
cally very different even though iso-electronic (like the ozone series cited in Sect. 
(1)), while molecules with similar VIF's  have similar behavior given similar 
electron occupations. 

Equations (13) did not show any loops implying the self-energies of  H ( a n =  
-13.6 eV) and tetrahedral carbon VP (a~ = [ac(S)+3ac(P)]/4= -13.9 eV) do 
not deviate much from their average (13.75 eV) where the zero of energy is taken. 
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But the rules show that even if ~:H or ~:to loops are added, the LPI is unaffected. 
I f  the reference zero is taken at t~H, a ~:-loop occurs on each carbon VP, but then 

the (s--C)-reduction proceeds just the same as in Eq. (13b). At the end, instead of 
the (H, ,tC) lines, a segment (H ~ ,(3 ~:) will remain. But this piece was 
shown to have the same (n§ = 1, n_ = 1) LPI contribution for any value of ~: in 
Eq. ( l l b ) .  For the line connected to the rest of  the molecule that will remain in 
Eq. (13b), one must proceed from another methyl terminus. Thus in a X- 
substituted alkane, the line connecting to X need be treated with care. In any 
larger straight or branched chain alkane the VIF splits into isolated C - H  lines 
and a carbons-only continuous chain with loops on each carbon VP. 

This chain is still split into isolated Ct-C't lines with a separate LPI of  its own 
and with its own reference zero at the at(c) slightly displaced from the hydrogen 
zero. 

(ii) Alkylamines and ammonia. Primary, secondary, or tertiary alkylamines lead 
to similar VIF reductions and LPI's. The zero of energy is taken at the H, C 
average (~o = [ a l l +  c~t(c)]/2) leaving only tetra-VP loops on nitrogen (if aN-- 
~0/~0 is not neglected). Alkyls split into G - H  and C-C  lines as in alkanes. The 
N - C  and N - H  isolated lines similarly result in addition to a nitrogen lone VP. 
Thus alkyl-amines have LPI = {n+ = n_ = no. of  H-C ,  C-C,  and N - C  bonds and 
no = 1 (at the nitrogen tetra-VP self energy). 

As in alkanes, any differences in the H-C ,  C - C  and C - N  line strengths (K's 
relative to say (/3cc/r ~ 1) do not affect the VIF-reductions, nor the LPI (as seen 
by Rule 1). 

Thus in the alkylamines too the numbers of  the bonding, non-bonding, and 
anti-bonding MO's in the delocalized description of electronic structure can be 
figured out directly from the structural formula (SF). The VIF's  i.e. the structural- 
electronic formula (SEF) also gives the structurally covariant localized descrip- 
tions. Into either form electrons can be assigned noting that an SEF line can get 
up to four electrons (n§ = 1, n_ = 1 ; N§ = 2, N_ = 2) it representing the unoccupied 
orbitals as well as the occupied ones unlike the SF which depicted only the 
ground state. 

Note that the use of  the rules above provides a far stronger statement about the 
MO LPI coming out as simply related to the number  of  single bonds and lone 
pairs of  the SF VB picture, than an intuitive guess would surmise. As all the 
atomic orbitals overlap with each other, in general it is not possible to assert just 
from the SF or VB that MO's will have so many bonding, non-bond ing , . . ,  types 
intuitively. The theorems of the new method in particular "structural covariance" 
(cf. Ref. [12]) show that with or without overlaps the LPI is the same. Thus a 
rigorous deduction is made by the VIF-rules as to the MO-LPI .  In fact, there 
are many cases where one could not have guessed the correct MO LPI intuitively 
from the numbers of  "bonds"  or "lone pairs" indicated by the octet rule or a SF 
VB: e.g. in H20, there are two single bonds and two octet-type "lone pairs",  but 
the MO LPI is different than {2, 2, 2}; rather one has from the VIF-rules: 
L P I = { n + = 3 ;  n_ =3}. 
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(iii). Dialkyl ethers, alkylalcohols, and the water molecule. The alky! groups' VIF's 
are drawn from the SF as in Eqs. (13) and each one s=c reduced that way until 
the oxygen is reached. The oxygen atomic VIF is also tetra-VP (possibly with 
~:-loops included relative to the std. carbon tetra-VP, hydrogen VP average 
reference energy; 

ot,(oxy.) = (32.3 + 3 x 14.8 eV)/4; 

' ( ~ 1 7 6 1 7 6  ( -5"4 ) / 3  ~ _----~.5~2 . 

Thus the VIF of the oxy-vicinity in the said ethers, alcohols, or water is as in 
Eq. (14). 

0 

" " ~ = ( ] ~ )  [ '1 SF: 
H " "  H VIF: ~ ~  

H " "~ H 

sc I (14) 

That the O-H line strengths may be different than the intra-oxygen ones (/300 = 
( a s ( o x y ) - a v ( o x y ) ] / 4 = - 4 . 4  eV) does not affect the LPI, since by Rule 1 the 
O-H line from the H-end may be multiplied by any K # 0 to make it the same 
as the intra-oxygen line. Any oxygen VP's-loops too are ineffectual when H-VP's 
after being multiplied by minus one are folded onto oxygen lines cancelling them. 
Thus Eq. (14a) shows two decoupled C-H lines and an oxygen "lone" VP-"lone" 
VP' line. The LPI = {n+ = n_ = 3}. This has covariantly [1], two meanings at the 
same time: i) there are 3 bonding MO's and 3 anti-bonding ones going over the 
whole molecule, or ii) providing an equivalent description as far as the LPI is 
concerned (not the actual magnitudes of the energy levels, since covariance is 
in-general non-unitary [1] in the mathematical sense) [1] as: local (not necessarily 
orthogonal) [1] MO's, a bonding-antibonding pair for each O-H and a bonding- 
antibonding pair for the oxygen "double lone pairs" ("lone" VP's become "lone 
pairs" if they are doubly occupied by electrons after the ECI assignment to the 
LPI.) 

The oxygen vicinity is the same in the above ethers and alcohols, the LPI consisting 
of {n+ = n_ = no. of C-H, C-C and O-C or O-H bonds +2). In the reduced 
VIF's, the intra-oxygen lone VP's line gets four electrons in the ECI leading to 
the slight repulsion between the resulting two lone pairs as anti-bonding is more 
anti-bonding [28] then bonding is bonding (when arising from a VP-VP' line; 
compare e.g. H2 and He2). 
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(iv) Monofluoroatkanes and the HF molecule. 

H-'F': 

o r  

R-'F': 
�9 . 

SF: F 

H 
(or R) 

( ; . . , ~ ,  F 

H c , , ' , , , j  
(or R) 

(]5) 

Any straight or branched alkyl R a f te r  its reduction has the same effect as a 
hydrogen in the s=c reduction with the two rules of the fluorine atomic VIF. 
(Similar remarks as in (i)-(iii) apply concerning F-self-energy and line strengths)�9 

The three fluorine "lone-VP's" remain triangularly coupled in Eq. (15) contributing 
one bonding and two antibonding MO's (or local MO's) to the LPI. The triangle 
accommodates six electrons of the ECI forming three coupled "lone pairs". The 
full MO LPI is = {n+ = no. of C-H,  C-C, C-F  bonds +1, n_ = no. of all bonds +2}. 

The examples above illustrated some of the basic methodology of the structural- 
electronic method and how the SE formulas are drawn and the rules applied�9 
Various classes of  compounds may be treated in these ways for making deductions 
concerning their qualitative chemistry. 

Appendix A. Quantum mechanical proof of the rules 

It was shown in the text that the "structural electronic formula" (SEF) (or VIF) 
directly depicts the effective one-electron hamiltonian h=Y~o~eA~ of the 
molecule, where A ~= 1 / 2 { I d ) ( d l  + Id)(e~l} with the abstract kets of the atomic 
orbitals which may be orthonormal or non-orthonormal. Each A U is a line in the 
SEF whose "strength" is the scalar r (often + or - unity). 

Multiplying a valency point i in the SEF by a number K, multiplies all the lines 
out of i by that •, since each [e i) or (e i] in h is multiplied by K, i.e. (Rule 1), 

K ~ floAO=YflO{Kle')(eq+ld)(e'fK} 
j ( r  j 

= E (K[3i~) A~ 
J 

Rule 2 amounts to adding an initial t e ')  to  an end-point teJ), i.e. l e ~) --, [] e i) + ]eJ)]. 
Thus any combinations or successions of Rule 1 and Rule 2 applied to an SEF, 
is tantamount to making a bilinear transformation on the {A~ and therefore of 
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the h ~ h'. These transformations have inverses, but do not have to be orthogonal, 
or unitary. Thus, the non-unitary ones do not preserve the eigenvalues, the 
spectrum of  h, but only their {no, n+, n_} types of the eigenvalues, hence the LP1. 
Since transformation from non-orthornorrnal (non-O.N.) AO-bases to orthonor- 
mal (O.N.) ones are also of the same type as the general, non-unitary transforma- 
tions mentioned, the LPI is unaffected whether the initial AO's were non-O.N. 
or O.N. 

The two rules allow one to quasi-diagnonalize an h by cutting out more and 
more lines (as in the examples in text) so as to get the LPI pictorially (with 
practice this gets easier and easier). 

In relating different molecules (isomers) to each other however, one more theoreti- 
cal foundation is needed (derived in detail in Paper I of Ref. [12]) which we 
outline here. For a fixed geometry of a given molecule, the {I e'}} are vectors in 
the Hilbert subspace V, which however are also located in the 3 dim. Euclidean 
3-space, e3. Thus an le')'s location 3D vector Ri should also be specified, [e~(R~)). 
In a different geometry or different isomer, that nominally same [e ~) is mapped 
onto a different location, [e~(Rl)). These new kets are in a new Hilbert subspace 
V,, not in the initial one. Thus the h of one isomer cannot be just transformed 
onto the h' of  another one linearly. However it is shown that [12] one may define 
a V,(R (")) field, and a dyad space field (V~ x V+)~~ each space of each R" then 
being mapped onto a single R-independent abstract, standardized dyad space 
V, x V +. The hamiltonians of each isomer (constitutional, stereo, geometr ic . . . )  
are also mapped onto this standardized dyad space. It is in this new space that 
transformations given by the two Rules may be carried out. One thereby deduces 
if two different molecules (same empirical formula) are of the same LPI or not. 

Appendix B. Electrononegativity difference loop-rules 

A loop in the SEF (as in some of the examples on the text), is a line starting 
and ending on the same valency point. Thus it depicts a term in h, such as 
Ai~= lei}(e~ I. Rule 1 now multiplies by K both ends of the line, so that the new 
"strength" becomes not K x~ ,  but K2x~:i (since Kle%(eiIK=,~2A~%. Rule 2 
becomes special "loop-subrules" as listed below. 

(i) Loop-rule 1. 

x(~) 

(ii) Loop-rule 2a. If the initial VP, i, and the end point j to which Rule 2 is being 
applied are directly connected (by the line (ij)), then j acquires a loop of twice 
the strength of the (~/)-line. 

Q2 
~_ ~ _ (A2) 

i j i j 
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(iii) Loop-rule 2b. In using Rule 2, if the initial  poin t  i has a loop on it of 

strength ~:, that  loop gets t ransferred onto the end poin t  j, while at the same time, 

a line be tween i and  j of  strength ~ forms. The init ial  loop on i is also retained. 

i = 7  " i 
(A3) 

The proof  of these sub-rules follow from the general  one in Append ix  A. It is 
convenien t  nevertheless to remember  the loop-rules separately rather than  deduc- 

ing them from the general  Rules 1 and 2 each time. 

As a simple i l lustrat ion of the use of the loop-subrules ,  Eq. (A4) reduces a single 

line SEF, such as that of  H2 or of qT"-C2H4 into the expected result of  a bonding-  
an t ibond ing  pair  of  MO's.  

sc 0 2 s c  r . 0 2  
i j j i - -2  j 

x(-2) ~ [  

x(~':I/2) x (~=1/2) 

(A4) 

,'. LPI: { n+=n_: l } 
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